Autonomous AI Agents — AutoGPT, BabyAGI & More¶
Build autonomous AI agents powered by Amazon Bedrock models through stdapi.ai. Deploy self-directed agents that can break down complex tasks, use tools, and work independently—using enterprise-grade models instead of OpenAI.
About Autonomous AI Agents¶
Autonomous agents are AI systems that can independently plan, execute, and refine tasks to achieve goals. Most agent frameworks are built for OpenAI's API, making them perfect candidates for stdapi.ai integration.
Popular Agent Frameworks¶
🔗 AutoGPT: Website | GitHub | Documentation
🔗 CrewAI: Website | GitHub | Docs
Why Autonomous Agents + stdapi.ai?¶
Autonomous AI
Run AI agents with Amazon Bedrock models for reasoning, longer context, and full control over your AI infrastructure.
Key Benefits:
- Reasoning - Claude Sonnet excels at planning and complex task breakdown
- Long context - Amazon Nova Pro supports 300K tokens for extensive agent memory
- Cost control - AWS pricing for compute-intensive agent operations
- Privacy & security - Agent data and conversations stay in your AWS environment
- No rate limits - Avoid OpenAI's strict limits during intensive agent runs
- Model selection - Choose optimal models for different agent tasks
Work in Progress
This integration guide is actively being developed and refined. While the configuration examples are based on documented APIs and best practices, they are pending practical validation. Complete end-to-end deployment examples will be added once testing is finalized.
🤖 AutoGPT Integration¶
About AutoGPT¶
AutoGPT is one of the most popular autonomous agent projects, capable of breaking down goals into tasks and executing them independently.
Installation:
git clone https://github.com/Significant-Gravitas/AutoGPT.git
cd AutoGPT
pip install -r requirements.txt
Configuration¶
.env Configuration
Create or edit .env file in the AutoGPT directory:
################################################################################
### LLM PROVIDER
################################################################################
## OPENAI (compatible with stdapi.ai)
OPENAI_API_KEY=your_stdapi_key_here
OPENAI_API_BASE_URL=https://YOUR_SERVER_URL/v1
## Model selection
SMART_LLM=anthropic.claude-sonnet-4-5-20250929-v1:0
FAST_LLM=amazon.nova-lite-v1:0
## Embeddings
EMBEDDING_MODEL=amazon.titan-embed-text-v2:0
################################################################################
### MEMORY
################################################################################
MEMORY_BACKEND=json_file
# MEMORY_BACKEND=pinecone # For production
################################################################################
### AGENT SETTINGS
################################################################################
AI_SETTINGS_FILE=ai_settings.yaml
AGENT_NAME=AutoGPT-Bedrock
Usage¶
Running AutoGPT
# Start AutoGPT
python -m autogpt
# With custom goal
python -m autogpt --goal "Research and summarize the latest AI developments"
# Continue previous run
python -m autogpt --continue
Model Selection Strategy:
- SMART_LLM — Used for complex reasoning and planning → Claude Sonnet
- FAST_LLM — Used for simple tasks and confirmations → Nova Lite or Micro
👶 BabyAGI Integration¶
About BabyAGI¶
BabyAGI is a minimal autonomous agent that creates, prioritizes, and executes tasks based on objectives.
Installation:
git clone https://github.com/yoheinakajima/babyagi.git
cd babyagi
pip install -r requirements.txt
Configuration¶
Python Configuration
Edit babyagi.py or use environment variables:
import os
from openai import OpenAI
# Configure OpenAI client for stdapi.ai
client = OpenAI(
api_key=os.environ.get("STDAPI_KEY"),
base_url="https://YOUR_SERVER_URL/v1"
)
# Agent configuration
OBJECTIVE = os.environ.get("OBJECTIVE", "Research sustainable energy solutions")
INITIAL_TASK = os.environ.get("INITIAL_TASK", "Develop a task list")
# Model selection
LLM_MODEL = "anthropic.claude-sonnet-4-5-20250929-v1:0"
EMBEDDING_MODEL = "amazon.titan-embed-text-v2:0"
# Task execution function
def task_execution_agent(objective, task):
response = client.chat.completions.create(
model=LLM_MODEL,
messages=[
{"role": "system", "content": f"You are an AI agent helping with: {objective}"},
{"role": "user", "content": task}
],
max_tokens=2000
)
return response.choices[0].message.content
Usage¶
Running BabyAGI
# Set environment variables
export STDAPI_KEY=your_key_here
export OBJECTIVE="Create a marketing plan for a new product"
# Run agent
python babyagi.py
🎭 CrewAI Integration¶
About CrewAI¶
CrewAI enables creating teams of AI agents that work together on complex tasks, each with specific roles and goals.
Installation:
pip install crewai crewai-tools openai
Configuration¶
Python - Multi-Agent Crew
import os
from crewai import Agent, Task, Crew
from langchain_openai import ChatOpenAI
# Configure LLM with stdapi.ai
llm = ChatOpenAI(
model="anthropic.claude-sonnet-4-5-20250929-v1:0",
openai_api_key=os.environ["STDAPI_KEY"],
openai_api_base="https://YOUR_SERVER_URL/v1"
)
# Define agents
researcher = Agent(
role="Senior Research Analyst",
goal="Discover cutting-edge developments in AI",
backstory="You're an expert at finding and analyzing information",
verbose=True,
llm=llm
)
writer = Agent(
role="Tech Content Writer",
goal="Create engaging content about technology",
backstory="You're a skilled writer who makes complex topics accessible",
verbose=True,
llm=llm
)
# Define tasks
research_task = Task(
description="Research the latest trends in AI agents",
agent=researcher,
expected_output="A detailed report on AI agent trends"
)
writing_task = Task(
description="Write a blog post based on the research",
agent=writer,
expected_output="A 500-word engaging blog post"
)
# Create crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
verbose=True
)
# Execute
result = crew.kickoff()
print(result)
🕸️ LangGraph Integration¶
About LangGraph¶
LangGraph is a framework for building stateful, multi-agent applications with complex control flow.
Installation:
pip install langgraph langchain-openai
Configuration¶
Python - Agent with Memory
from typing import TypedDict, Annotated
from langgraph.graph import StateGraph, END
from langchain_openai import ChatOpenAI
import operator
import os
# Configure LLM
llm = ChatOpenAI(
model="anthropic.claude-sonnet-4-5-20250929-v1:0",
openai_api_key=os.environ["STDAPI_KEY"],
openai_api_base="https://YOUR_SERVER_URL/v1"
)
# Define state
class AgentState(TypedDict):
messages: Annotated[list, operator.add]
next_action: str
# Define nodes
def call_model(state):
messages = state["messages"]
response = llm.invoke(messages)
return {"messages": [response]}
def decide_next_action(state):
# Logic to determine next step
last_message = state["messages"][-1].content
if "FINISH" in last_message:
return END
return "call_model"
# Build graph
workflow = StateGraph(AgentState)
workflow.add_node("call_model", call_model)
workflow.add_edge("call_model", "decide_next_action")
workflow.set_entry_point("call_model")
app = workflow.compile()
# Run agent
result = app.invoke({
"messages": [{"role": "user", "content": "Create a research plan"}]
})
🎯 Agent Design Patterns¶
Task Decomposition¶
Break complex goals into manageable sub-tasks.
Task Planning Pattern
def plan_tasks(objective):
response = client.chat.completions.create(
model="anthropic.claude-sonnet-4-5-20250929-v1:0",
messages=[{
"role": "user",
"content": f"""Break down this objective into specific tasks:
Objective: {objective}
Provide a numbered list of 3-5 concrete tasks."""
}]
)
return response.choices[0].message.content
Tool Usage¶
Enable agents to use external tools and APIs.
Agent with Tools
from langchain.agents import create_openai_functions_agent, AgentExecutor
from langchain.tools import Tool
from langchain_openai import ChatOpenAI
# Configure LLM
llm = ChatOpenAI(
model="anthropic.claude-sonnet-4-5-20250929-v1:0",
openai_api_key=os.environ["STDAPI_KEY"],
openai_api_base="https://YOUR_SERVER_URL/v1"
)
# Define tools
def web_search(query):
"""Search the web for information"""
# Your search implementation
return f"Search results for: {query}"
def calculator(expression):
"""Perform calculations"""
try:
return str(eval(expression))
except:
return "Invalid expression"
tools = [
Tool(name="WebSearch", func=web_search, description="Search the web"),
Tool(name="Calculator", func=calculator, description="Do math")
]
# Create agent
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
# Run with tools
result = agent_executor.invoke({
"input": "What is 15% of 1250? Then search for that amount in USD"
})
Memory Management¶
Implement different memory types for agent persistence.
Memory Types
Short-term Memory (Conversation):
conversation_history = []
def add_to_memory(role, content):
conversation_history.append({"role": role, "content": content})
# Keep last 20 messages
return conversation_history[-20:]
Long-term Memory (Vector Store):
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
model="amazon.titan-embed-text-v2:0",
openai_api_key=os.environ["STDAPI_KEY"],
openai_api_base="https://YOUR_SERVER_URL/v1"
)
memory_store = Chroma(embedding_function=embeddings)
def store_memory(content):
memory_store.add_texts([content])
def recall_memory(query, k=3):
return memory_store.similarity_search(query, k=k)
📊 Model Selection by Agent Task¶
Choose models based on agent task requirements. These are examples—all Bedrock models are available.
| Agent Task | Example Model | Why |
|---|---|---|
| Planning & Strategy | anthropic.claude-sonnet-4-5-20250929-v1:0 |
Superior reasoning and task decomposition |
| Task Execution | amazon.nova-lite-v1:0 |
Fast, efficient for routine tasks |
| Long Context | amazon.nova-pro-v1:0 |
300K token context for extensive memory |
| Code Generation | anthropic.claude-sonnet-4-5-20250929-v1:0 |
Best for writing and debugging code |
| Quick Decisions | amazon.nova-micro-v1:0 |
Fast responses for simple choices |
| Embeddings | amazon.titan-embed-text-v2:0 |
High-quality semantic memory |
💡 Best Practices¶
Agent Design
Clear Objectives: Define specific, measurable goals for agents
Task Constraints: Set time limits and iteration caps to prevent runaway execution
Human-in-the-Loop: Include checkpoints for human review and approval
Graceful Failure: Design agents to handle failures and ask for help
Performance Optimization
Model Selection: Use fast models for simple tasks, premium for complex reasoning
Parallel Execution: Run independent tasks concurrently when possible
Caching: Cache tool results and API responses to avoid redundant calls
Incremental Progress: Save state frequently to resume from failures
Safety & Control
Sandbox Environment: Test agents in isolated environments first
Rate Limiting: Prevent excessive API usage with throttling
Action Approval: Require confirmation for destructive actions
Logging: Comprehensive logs of all agent actions for debugging
Budget Limits: Set token usage caps to control costs
Production Deployment
Error Handling: Robust error recovery and retry logic
State Persistence: Store agent state in databases for resilience
Monitoring: Track agent performance, success rates, and costs
Version Control: Track agent configurations and prompt changes
🚀 Advanced Agent Patterns¶
Multi-Agent Collaboration¶
Have multiple specialized agents work together.
Agent Team Pattern
# Research agent
researcher = Agent(
role="Researcher",
model="anthropic.claude-sonnet-4-5-20250929-v1:0",
task="Gather information"
)
# Analyst agent
analyst = Agent(
role="Analyst",
model="amazon.nova-pro-v1:0",
task="Analyze data"
)
# Writer agent
writer = Agent(
role="Writer",
model="anthropic.claude-sonnet-4-5-20250929-v1:0",
task="Create report"
)
# Coordinator
def coordinate_agents(objective):
research = researcher.execute(objective)
analysis = analyst.execute(research)
report = writer.execute(analysis)
return report
Feedback Loops¶
Implement self-improvement through iteration.
Iterative Refinement
def iterative_agent(task, max_iterations=3):
result = initial_attempt(task)
for i in range(max_iterations):
critique = critique_result(result)
if "ACCEPTABLE" in critique:
break
result = refine_result(result, critique)
return result
🚀 Next Steps & Resources¶
Getting Started¶
- Choose Framework: Start with BabyAGI or CrewAI for simpler implementations
- Define Objectives: Start with small, well-defined goals
- Configure stdapi.ai: Set up credentials and model preferences
- Test Safely: Run in sandbox environment with supervision
- Monitor & Iterate: Track performance and refine agent behavior
Learn More¶
Additional Resources
- AutoGPT Documentation — Comprehensive agent guide
- CrewAI Documentation — Multi-agent systems
- LangGraph Tutorials — Complex agent workflows
- API Overview — Complete list of available Bedrock models
- LangChain Integration — Framework integration details
Community & Support¶
Need Help?
- 💬 Join framework-specific Discord communities
- 📖 Review Amazon Bedrock documentation for model capabilities
- 🐛 Report issues on the GitHub repository
- 💡 Share agent patterns with the community
⚠️ Important Considerations¶
Model Availability
Regional Differences: Not all Amazon Bedrock models are available in every AWS region. Verify model availability before deploying agents.
Check availability: See the API Overview for supported models by region.
Safety & Ethics
Agent Supervision: Always supervise autonomous agents, especially in production
Action Limits: Restrict agents from performing destructive or irreversible actions
Data Privacy: Ensure agents don't process or expose sensitive information
Compliance: Follow applicable regulations for automated decision-making
Cost Management
Token Usage: Agents can consume many tokens—monitor usage closely
Iteration Limits: Set maximum iterations to prevent runaway costs
Model Selection: Use efficient models where possible to reduce costs
Caching: Cache intermediate results to avoid redundant processing
Performance Expectations
Response Times: Agents are slower than simple API calls due to iteration
Reliability: Agents may fail or produce unexpected results—plan accordingly
Determinism: Agent behavior can vary between runs—test thoroughly
Scaling: Resource usage scales with task complexity and iteration count