Skip to content

Embeddings API

Transform text into semantic vectors. Power your search, recommendations, and similarity features with AWS Bedrock embedding models through an OpenAI-compatible interface.

Why Choose Embeddings?

  • Semantic Search
    Find content based on meaning and context, not just exact words. For knowledge bases and document retrieval.

  • High Performance
    AWS Bedrock embedding models deliver fast vectors optimized for production workloads. Batch processing for large-scale operations.

  • Flexible Dimensions
    Choose vector dimensions that match your needs. Balance accuracy and storage/compute costs with model-specific dimension control.

  • Multimodal Embeddings
    Process images, videos, audio, and PDF documents alongside text. Unified embeddings for cross-modal search using base64 data URI input.

Quick Start: Available Endpoint

Endpoint Method What It Does Powered By
/v1/embeddings POST Transform text into semantic vectors AWS Bedrock Embedding Models

Feature Compatibility

Feature Status Notes
Input Types
Text input (single string) Full support for text embeddings
Multimodal input Image, audio, video
Multiple input (batch array) Process multiple inputs efficiently
Token array input Array of token integers not supported
Output Formats
Float vectors Standard floating-point arrays
Base64 encoding Base64-encoded float32 arrays
Model Parameters
dimensions override Some models support dimension reduction
encoding_format Choose float or base64
Extra model-specific params Extra model-specific parameters not supported by the OpenAI API
Usage tracking
Input text tokens Estimated on some models

Legend:

  • Supported — Fully compatible with OpenAI API
  • Available on Select Models — Check your model's capabilities
  • Unsupported — Not available in this implementation
  • Extra Feature — Enhanced capability beyond OpenAI API

Advanced Features

Provider-Specific Parameters

Access advanced embedding capabilities by passing provider-specific parameters directly in your requests. These parameters are forwarded to AWS Bedrock and allow you to access features unique to each embedding model provider.

Documentation: Bedrock Embedding Model Parameters

How It Works:

Add provider-specific fields at the top level of your request body alongside standard OpenAI parameters. The API automatically forwards these to the appropriate model provider via AWS Bedrock.

Examples:

Cohere Embed v4 - Input Type:

{
  "model": "cohere.embed-v4",
  "input": "Semantic search transforms how we find information",
  "input_type": "search_query"
}

Amazon Titan Embed v2 - Normalization:

{
  "model": "amazon.titan-embed-text-v2:0",
  "input": "Product description for similarity matching",
  "normalize": true
}

Configuration Options:

Option 1: Per-Request

Add provider-specific parameters directly in your request body (as shown in examples above).

Option 2: Server-Wide Defaults

Configure default parameters for specific models via the DEFAULT_MODEL_PARAMS environment variable:

export DEFAULT_MODEL_PARAMS='{
  "cohere.embed-v4": {
    "input_type": "search_document",
    "truncate": "END"
  }
}'

Note: Per-request parameters override server-wide defaults.

Behavior:

  • Compatible parameters: Forwarded to the model and applied
  • ⚠️ Unsupported parameters: Return HTTP 400 with an error message

Try It Now

Single text embedding:

curl -X POST "$BASE/v1/embeddings" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "amazon.titan-embed-text-v2:0",
    "input": "Semantic search transforms how we find information"
  }'

Batch processing with base64 encoding:

curl -X POST "$BASE/v1/embeddings" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "amazon.titan-embed-text-v2:0",
    "input": ["Product description", "User query", "Related content"],
    "encoding_format": "base64"
  }'

Multimodal Embeddings

Go beyond text! Supported models can process images, videos, and audio through base64 data URI input. This enables powerful cross-modal search and similarity features.

Input Format

Multimodal content is passed as base64-encoded data URIs:

data:<mime-type>;base64,<base64-encoded-content>

Example: Image Embedding

# First, encode your image to base64
IMAGE_B64=$(base64 -w 0 image.jpg)

# Send the embedding request
curl -X POST "$BASE/v1/embeddings" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
  -d "{
    \"model\": \"cohere.embed-v4\",
    \"input\": \"data:image/jpeg;base64,$IMAGE_B64\"
  }"

Example: Video Embedding

Option 1: Base64-encoded video (for small files)

# First, encode your video to base64
VIDEO_B64=$(base64 -w 0 video.mp4)

# Send the embedding request
curl -X POST "$BASE/v1/embeddings" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
  -d "{
    \"model\": \"twelvelabs.marengo-embed-2-7-v1:0\",
    \"input\": \"data:video/mp4;base64,$VIDEO_B64\"
  }"

Option 2: S3 URL (for large files)

# Send the embedding request with S3 URL
curl -X POST "$BASE/v1/embeddings" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "twelvelabs.marengo-embed-2-7-v1:0",
    "input": "s3://my-bucket/path/to/video.mp4"
  }'

Regional S3 Buckets Required

Video and audio embeddings with TwelveLabs models process content asynchronously and may require regional S3 buckets configured via AWS_S3_REGIONAL_BUCKETS for the region where the model is invoked. See the configuration guide for setup instructions.

S3 URL Requirements

When passing S3 URLs for large video files:

  • The S3 bucket must be in the same AWS region as the Bedrock model you're invoking
  • The STDAPI server must have access to the S3 bucket

Example: PDF Document Embedding

For PDFs, convert each page to an image and send via inputs along with page metadata (e.g., file_name, entities) in adjacent text parts. For RAG applications, smaller chunks often improve retrieval accuracy and reduce costs.

# Convert PDF pages to images (using ImageMagick or similar tool)
convert -density 150 document.pdf page-%d.jpg

# Encode each page image to base64
PAGE_1=$(base64 -w 0 page-0.jpg)
PAGE_2=$(base64 -w 0 page-1.jpg)

# Generate document embedding with metadata
curl -X POST "$BASE/v1/embeddings" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
  -d "{
    \"model\": \"cohere.embed-v4\",
    \"input\": [
      \"file_name: report.pdf, page: 1\",
      \"data:image/jpeg;base64,$PAGE_1\",
      \"file_name: report.pdf, page: 2\",
      \"data:image/jpeg;base64,$PAGE_2\"
    ]
  }"

Mixed-Content Batching

Combine text and multimodal inputs in a single request:

curl -X POST "$BASE/v1/embeddings" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
  -d "{
    \"model\": \"cohere.embed-v4\",
    \"input\": [
      \"A beautiful sunset over mountains\",
      \"...\",
      \"Nature photography collection\"
    ]
  }"

Use Cases

  • Visual Search: Find images similar to a query image or text description
  • Video Analysis: Search and retrieve video content based on visual similarity or text descriptions
  • Audio Similarity: Find similar audio clips or match audio to text descriptions
  • Document Retrieval: Find relevant PDFs based on visual and textual content
  • Cross-Modal Recommendations: Recommend images, videos, or audio based on text queries and vice versa
  • Content Moderation: Analyze and classify multimodal content at scale

Build smarter search and recommendations! Explore available embedding models in the Models API.