Embeddings API¶
Transform text into semantic vectors. Power your search, recommendations, and similarity features with AWS Bedrock embedding models through an OpenAI-compatible interface.
Why Choose Embeddings?¶
-
Semantic Search
Find content based on meaning and context, not just exact words. For knowledge bases and document retrieval. -
High Performance
AWS Bedrock embedding models deliver fast vectors optimized for production workloads. Batch processing for large-scale operations. -
Flexible Dimensions
Choose vector dimensions that match your needs. Balance accuracy and storage/compute costs with model-specific dimension control. -
Multimodal Embeddings
Process images, videos, audio, and PDF documents alongside text. Unified embeddings for cross-modal search using base64 data URI input.
Quick Start: Available Endpoint¶
| Endpoint | Method | What It Does | Powered By |
|---|---|---|---|
/v1/embeddings |
POST | Transform text into semantic vectors | AWS Bedrock Embedding Models |
Feature Compatibility¶
| Feature | Status | Notes |
|---|---|---|
| Input Types | ||
| Text input (single string) | Full support for text embeddings | |
| Multimodal input | Image, audio, video | |
| Multiple input (batch array) | Process multiple inputs efficiently | |
| Token array input | Array of token integers not supported | |
| Output Formats | ||
| Float vectors | Standard floating-point arrays | |
| Base64 encoding | Base64-encoded float32 arrays | |
| Model Parameters | ||
dimensions override |
Some models support dimension reduction | |
encoding_format |
Choose float or base64 |
|
| Extra model-specific params | Extra model-specific parameters not supported by the OpenAI API | |
| Usage tracking | ||
| Input text tokens | Estimated on some models |
Legend:
- Supported — Fully compatible with OpenAI API
- Available on Select Models — Check your model's capabilities
- Unsupported — Not available in this implementation
- Extra Feature — Enhanced capability beyond OpenAI API
Advanced Features¶
Provider-Specific Parameters¶
Access advanced embedding capabilities by passing provider-specific parameters directly in your requests. These parameters are forwarded to AWS Bedrock and allow you to access features unique to each embedding model provider.
Documentation: Bedrock Embedding Model Parameters
How It Works:
Add provider-specific fields at the top level of your request body alongside standard OpenAI parameters. The API automatically forwards these to the appropriate model provider via AWS Bedrock.
Examples:
Cohere Embed v4 - Input Type:
{
"model": "cohere.embed-v4",
"input": "Semantic search transforms how we find information",
"input_type": "search_query"
}
Amazon Titan Embed v2 - Normalization:
{
"model": "amazon.titan-embed-text-v2:0",
"input": "Product description for similarity matching",
"normalize": true
}
Configuration Options:
Option 1: Per-Request
Add provider-specific parameters directly in your request body (as shown in examples above).
Option 2: Server-Wide Defaults
Configure default parameters for specific models via the DEFAULT_MODEL_PARAMS environment variable:
export DEFAULT_MODEL_PARAMS='{
"cohere.embed-v4": {
"input_type": "search_document",
"truncate": "END"
}
}'
Note: Per-request parameters override server-wide defaults.
Behavior:
- ✅ Compatible parameters: Forwarded to the model and applied
- ⚠️ Unsupported parameters: Return HTTP 400 with an error message
Try It Now¶
Single text embedding:
curl -X POST "$BASE/v1/embeddings" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "amazon.titan-embed-text-v2:0",
"input": "Semantic search transforms how we find information"
}'
Batch processing with base64 encoding:
curl -X POST "$BASE/v1/embeddings" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "amazon.titan-embed-text-v2:0",
"input": ["Product description", "User query", "Related content"],
"encoding_format": "base64"
}'
Multimodal Embeddings¶
Go beyond text! Supported models can process images, videos, and audio through base64 data URI input. This enables powerful cross-modal search and similarity features.
Input Format¶
Multimodal content is passed as base64-encoded data URIs:
data:<mime-type>;base64,<base64-encoded-content>
Example: Image Embedding¶
# First, encode your image to base64
IMAGE_B64=$(base64 -w 0 image.jpg)
# Send the embedding request
curl -X POST "$BASE/v1/embeddings" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d "{
\"model\": \"cohere.embed-v4\",
\"input\": \"data:image/jpeg;base64,$IMAGE_B64\"
}"
Example: Video Embedding¶
Option 1: Base64-encoded video (for small files)
# First, encode your video to base64
VIDEO_B64=$(base64 -w 0 video.mp4)
# Send the embedding request
curl -X POST "$BASE/v1/embeddings" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d "{
\"model\": \"twelvelabs.marengo-embed-2-7-v1:0\",
\"input\": \"data:video/mp4;base64,$VIDEO_B64\"
}"
Option 2: S3 URL (for large files)
# Send the embedding request with S3 URL
curl -X POST "$BASE/v1/embeddings" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "twelvelabs.marengo-embed-2-7-v1:0",
"input": "s3://my-bucket/path/to/video.mp4"
}'
Regional S3 Buckets Required
Video and audio embeddings with TwelveLabs models process content asynchronously and may require regional S3 buckets configured via AWS_S3_REGIONAL_BUCKETS for the region where the model is invoked. See the configuration guide for setup instructions.
S3 URL Requirements
When passing S3 URLs for large video files:
- The S3 bucket must be in the same AWS region as the Bedrock model you're invoking
- The STDAPI server must have access to the S3 bucket
Example: PDF Document Embedding¶
For PDFs, convert each page to an image and send via inputs along with page metadata (e.g., file_name, entities) in adjacent text parts. For RAG applications, smaller chunks often improve retrieval accuracy and reduce costs.
# Convert PDF pages to images (using ImageMagick or similar tool)
convert -density 150 document.pdf page-%d.jpg
# Encode each page image to base64
PAGE_1=$(base64 -w 0 page-0.jpg)
PAGE_2=$(base64 -w 0 page-1.jpg)
# Generate document embedding with metadata
curl -X POST "$BASE/v1/embeddings" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d "{
\"model\": \"cohere.embed-v4\",
\"input\": [
\"file_name: report.pdf, page: 1\",
\"data:image/jpeg;base64,$PAGE_1\",
\"file_name: report.pdf, page: 2\",
\"data:image/jpeg;base64,$PAGE_2\"
]
}"
Mixed-Content Batching¶
Combine text and multimodal inputs in a single request:
curl -X POST "$BASE/v1/embeddings" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d "{
\"model\": \"cohere.embed-v4\",
\"input\": [
\"A beautiful sunset over mountains\",
\"...\",
\"Nature photography collection\"
]
}"
Use Cases¶
- Visual Search: Find images similar to a query image or text description
- Video Analysis: Search and retrieve video content based on visual similarity or text descriptions
- Audio Similarity: Find similar audio clips or match audio to text descriptions
- Document Retrieval: Find relevant PDFs based on visual and textual content
- Cross-Modal Recommendations: Recommend images, videos, or audio based on text queries and vice versa
- Content Moderation: Analyze and classify multimodal content at scale
Build smarter search and recommendations! Explore available embedding models in the Models API.